
\

What Is SSH?

SSH (short for “Secure Shell” or “Secure Socket Shell”) is a network protocol for accessing

network services securely over unsecured networks. It includes the suite of utilities

implementing it, such as:

● ssh-keygen: for creating new authentication key pairs for SSH;

● SCP (Secure Copy Protocol): for copying files between hosts on a network;

● SFTP (Secure File Transfer Protocol): for sending and receiving files. It’s an SSH-

secured version of FTP (File Transfer Protocol), and it has replaced FTP and FTPS

(FTP Secure) as the preferred mechanism for file sharing over the Internet.

An SSH server, by default, listens for connections on the standard Transmission Control

Protocol (TCP) port 22. Your applications may listen for SSH connections on other ports.

SSH lets you securely manage remote systems and applications, such as logging in to

another computer over a network, executing commands, and moving files from one

computer to another. An advanced SSH functionality is the creation of secure tunnels to run

other application protocols remotely.

Basic SSH Commands

The following are fundamental SSH commands. Commit as many to memory as you can.

Command Description
ssh Connect to a remote server
ssh pi@raspberry Connect to the device raspberry on the

default SSH port 22 as user pi

SSH Commands Cheat Sheet

https://www.stationx.net/common-ports-cheat-sheet/

\

ssh pi@raspberry -p 3344 Connect to the device raspberry on a

specific port 3344 as user pi

ssh -i /path/file.pem

admin@192.168.1.1

Connect to root@192.168.1.1 via the

key file /path/file.pem as user admin

ssh root@192.168.2.2 'ls -l' Execute remote command ls -l on

192.168.2.2 as user root

$ ssh user@192.168.3.3 bash <

script.sh

Invoke the script script.sh in the current

working directory spawning the SSH
session to 192.168.3.3 as user user

ssh friend@Best.local "tar cvzf

- ~/ffmpeg" > output.tgz

Compress the ~/ffmpeg directory and

download it from a server Best.local as

user friend

ssh-keygen Generate SSH keys (follow the prompts)
ssh-keygen -F [ip/hostname] Search for some IP address or hostname

from ~/.ssh/known_hosts (logged-in

host)
ssh-keygen -R [ip/hostname] Remove some IP address or hostname

from ~/.ssh/known_hosts (logged-in

host)
ssh-keygen -f ~/.ssh/filename Specify file name
ssh-keygen -y -f private.key >

public.pub

Generate public key from private key

ssh-keygen -c -f ~/.ssh/id_rsa Change the comment of the key file
~/.ssh/id_rsa

ssh-keygen -p -f ~/.ssh/id_rsa Change passphrase of private key
~/.ssh/id_rsa

ssh-keygen -t rsa -b 4096 -C

"my@email.com"

Generate an RSA 4096-bit key with
“my@email.com” as a comment:

-t: Type of key (rsa, ed25519, dsa,

ecdsa)

-b: The number of bits in the key

-C: Provides a new comment

scp Copy files securely between servers
scp user@server:/folder/file.ext

dest/

Copy from remote to local destination
dest/

scp dest/file.ext

user@server:/folder

Copy from local to remote

scp user1@server1:/file.ext

user2@server2:/folder

Copy between two different servers

scp user@server:/folder/* . Copies from a server folder to the current
folder on the local machine

scp -r Recursively copy entire directories
scp -r user@server:/folder dest/ Copy the entire folder to the local

destination dest/

scp user@server:/folder/* dest/ Copy all files from a folder to the local
destination dest/

scp -C Option to compress data
scp -v Option to print verbose info

\

scp -p Option to preserve the last modification
timestamps of the transferred files

scp -P 8080 Option to connect to remote host port 8080
scp -B Option for batch mode and prevent you

from entering passwords or passphrases
sftp Securely transfer files between servers
sftp -p Option to preserve the last modification

timestamps of the transferred files
sftp -P 8080 Option to connect to remote host port 8080
sftp -r Recursively copy entire directories when

uploading and downloading. SFTP doesn’t
follow symbolic links encountered in the
tree traversal.

SSH Configurations and Options

Have you ever wondered how SSH remembers your login credentials for various machines?

This section is a brief reference on how to do so.

Command Description
man ssh_config Open OpenSSH SSH client configuration

files. This manual lists all the OpenSSH
parameters you can change.

cat /etc/ssh/ssh_config | less View your OpenSSH client system-wide
configuration file

cat /etc/ssh/sshd_config | less View your OpenSSH server system-wide
configuration file; the “d” stands for the
server “daemon”

cat ~/.ssh/config | less View your SSH client user-specific
configuration file

cat ~/.ssh/id_{type} | less View your SSH client private key; type is

any of rsa, ed25519, dsa, ecdsa.

cat ~/.ssh/id_{type}.pub | less View your SSH client public key; type is

any of rsa, ed25519, dsa, ecdsa.

cat ~/.ssh/known_hosts | less View your SSH client logged-in hosts
cat ~/.ssh/authorized_keys |

less

View your SSH client authorized login keys

ssh-agent Hold private SSH keys used for public
key authentication (RSA, DSA, ECDSA,
Ed25519)

ssh-agent -E fingerprint_hash Specify the hash algorithm used when
displaying key fingerprints.

Valid fingerprint_hash options are

sha256 (default) and md5.

ssh-agent -t lifetime Set up a maximum lifetime for

identities/private keys, overwritable by the
same setting in ssh-add.

Examples of lifetime:

https://www.thegeekstuff.com/2009/10/how-to-execute-ssh-and-scp-in-batch-mode-only-when-passwordless-login-is-enabled/

\

● 600 = 600 seconds (10 minutes)

● 23m = 23 minutes

● 1h45 = 1 hour 45 minutes

ssh-add Add SSH keys to the ssh-agent

ssh-add -l List your private keys cached by ssh-
agent

ssh-add -t lifetime Set up a maximum lifetime for

identities/private keys.

Examples of lifetime:

● 600 = 600 seconds (10 minutes)

● 23m = 23 minutes

● 1h45 = 1 hour 45 minutes

ssh-add -L List the public key parameters of all saved
identities

ssh-add -D Delete all cached private keys
ssh-copy-id Copy, install, and configure SSH keys on

a remote server
ssh-copy-id user@server Copy SSH keys to a server as a user

ssh-copy-id server1 Copy to some alias server server1 with

the default login
ssh-copy-id -i ~/.ssh/id_rsa.pub

user@server

Copy a specific key to a server as a user

Remote Server Management

The operating systems of SSH servers are mostly Unix/Linux, so once you’ve logged in to a

server via SSH, the following commands are largely the same as their counterparts in

Unix/Linux. Check out our Unix commands cheat sheet and Linux command line cheat sheet

for other file management commands applicable to SSH.

Command Description
cd Change the current working directory
kill Stop a running process
ls List files and directories
mkdir Create a new directory
mv Move files or directories
nano Edit a file in the terminal using Nano
ps List running processes
pwd Display the current working directory
tail View the last few (10, by default) lines of a

file
top Monitor system resources and processes
touch Create a new file or update the timestamp

of an existing file
vim Edit a file in the terminal using Vim
exit Close the SSH session

https://www.stationx.net/unix-commands-cheat-sheet/
https://www.stationx.net/linux-command-line-cheat-sheet/

\

Using PowerShell to access a lab account on a network computer via SSH on Windows 10

Advanced SSH Commands

This table lists some complex SSH utilities that can help with network administration tasks:

SSH File System (SSHFS), data compression, and X11 forwarding.

To conduct X11 forwarding over SSH, do these three things:
1. Set up your client (~/.ssh/config) to forward X11 by setting these parameters:

Host *

 ForwardAgent yes

 ForwardX11 yes

2. Set up your server (/etc/ssh/sshd_config) to allow X11 by setting these

parameters:
X11Forwarding yes

X11DisplayOffset 10

X11UseLocalhost no

3. Set up X11 authentication on your server by installing xauth.

\

Command Description
sshfs Mount a remote server’s file system on a

local directory.

Remember to install this program onto your
machine before use. Example installation
commands:

● sudo apt install sshfs #

Ubuntu/Debian

● sudo yum install fuse-sshfs

CentOS

Learn to install apps on various Linux
distributions here.

ssh -C hostname Compress SSH traffic to improve
performance on slow connections.

Alternatively, insert Compression yes

into your SSH configuration files.
ssh -o "Compression yes" -v

hostname

An alternative method to compress SSH
traffic to improve performance on slow
connections.

This is the same as inserting
Compression yes into your SSH

configuration files.
ssh -X user@server Enable X11 forwarding over SSH: forward

graphical applications from a remote
server as a user to a local machine.

ssh -o ForwardX11=yes

user@server

Enable X11 forwarding over SSH: forward
graphical applications from a remote
server as a user to a local machine.

ssh -x Disable X11 forwarding
ssh -Y Enable trusted X11 forwarding. This option

is riskier than ssh -X as it forwards the

entire display of the SSH server to the
client.

Tunneling

These SSH command line options create secure tunnels.

Options Description Syntax / Example
-L Local port forwarding:

forward a port on the local
machine (SSH client) to a
port on the remote machine
(ssh_server as user), the

traffic of which goes to a

ssh user@ssh_server -

L

local_port:destinatio

n:remote_port

Example

https://phoenixnap.com/kb/sshfs
https://www.stationx.net/linux-command-line-cheat-sheet/#installing-new-programs

\

port on the destination

machine.

The parameters
local_port and

remote_port can match.

ssh root@192.168.0.1

-L 2222:10.0.1.5:3333

-J ProxyJump; ensure that
traffic passing through the
intermediate/bastion hosts is
always encrypted end-to-
end.

ProxyJump is how you use
bastion hosts to connect to
a remote host with a single
command.

ssh -J proxy_host1

remote_host2

ssh -J

user@proxy_host1

user@remote_host2

Multiple bastion

hosts/jumps

ssh -J

user@proxy_host1:port

1,user@proxy_host2:po

rt2 user@remote_host3

-R Remote port forwarding:
forward a port
remote_port on the

remote machine
(ssh_server as user) to a

port on the local machine
(SSH client), the traffic of
which goes to a port
destination_port on the

destination machine.

An empty remote means

the remote SSH server will
bind on all interfaces.

Additional SSH options in
the example:
-N: don’t execute remote

commands; useful for
dedicated port forwarding
-f: run SSH in the

background.

ssh -R

[remote:]remote_port:

destination:destinati

on_port

[user@]ssh_server

Example

ssh -R

8080:192.168.3.8:3030

-N -f

user@remote.host

-D Set up a SOCKS Proxy to
tunnel traffic from a
remote_host on which

you’re the user to a

local_port_number.

Additional SSH options in
the example:
-q: quiet mode; don’t output

anything locally
-C: compress data in the

tunnel, save bandwidth

ssh -D

local_port_number

user@remote_host

Example

ssh -D 6677 -q -C -N

-f me@192.168.5.5

\

-N: don’t execute remote

commands; useful for
dedicated port forwarding
-f: run SSH in the

background.

SSH Tunneling Demonstration

Let’s show you two ways to pipe traffic from your router into Wireshark and monitor your

network activity. The first demonstration involves installing programs onto a system used as

a router; the second, without.

Using Django

\

\

As a demonstration, we’re piping traffic from a router into Wireshark, so that we can monitor

live web traffic through an SSH tunnel. (The router below is a macOS computer hosting a

Kali Linux virtual machine using the Wireshark instance installed on the latter.)

The setup is as follows:

1. On the router: Enable remote access via SSH. (NOTE: On the macOS system, go

to System Preferences > Sharing > turn on Remote Login and note the login

username and hostname. For your router setup, check your specific manufacturer's

guide to enable remote access via SSH.)

2. On the router: Install Python Django and start up the Django template server on

http://127.0.0.1:8000 using the Terminal command string django-admin

startproject mysite; cd mysite; python manage.py runserver (or

python3 manage.py runserver). Note the Django web app uses port 8000.

3. On Kali Linux: execute this command to listen on port 8080: ls | nc -l -p

8080

4. On Kali Linux: execute this command in a different Terminal tab/window. Below,

8000 is the router’s Django port, 8080 is the Kali Linux listening port on localhost,

and the command involves remote port forwarding (-R): sudo ssh -R

8000:localhost:8080 user@router_ip

5. On Kali Linux: start Wireshark and select the loopback interface (lo) as the capture

device. Wireshark should be sniffing packets on lo now.

6. On the router: visit http://127.0.0.1:8000 in a web browser. (Note localhost and

127.0.0.1 are equivalent.) The Django server wouldn’t load; it freezes instead

because of the rerouted traffic.

7. On Kali Linux: You should expect the following results:

Piping traffic of Django web app http://127.0.0.1:8000 on the macOS router into the

Wireshark instance on Kali Linux

https://www.stationx.net/wireshark-cheat-sheet/
https://docs.djangoproject.com/en/4.2/intro/tutorial01/
http://127.0.0.1:8000/
http://127.0.0.1:8000/
http://127.0.0.1:8000/

\

Wireshark HTTP packet corresponding to the Django web app on the router

Using tcpdump

\

The following is an alternative method for capturing remote web traffic passing through a

router.

In Kali Linux, you’ll log in to your router via SSH, capture packets with the command-line

packet capturing tool tcpdump, and pipe the traffic into Wireshark.

Here is the required command with the option flags explained:

ssh [username]@[hostname/ip] tcpdump -U -s 65525 -w - 'not port 22'

| wireshark -k -i -

● -U: No buffering. Produce real-time output.

https://www.stationx.net/tcpdump-cheat-sheet/

\

● -s 65525: Grab 65525 bytes of data from each packet rather than the default of

262144 bytes. 65525 is the maximum transmission unit of a Point-to-Point Protocol

packet that Wireshark can handle. Adjust this number as you see fit.

● -w: Write each packet to the output packet capture file on your local disk in Kali

Linux. Combining -U and -w means tcpdump writes to your output file as the packets

pour in, rather than until the memory buffer fills up.

● 'not port 22': This is to prevent tcpdump from echoing the SSH packets sent

between your machine and the router.

● -k -i -: Start the capture immediately and use the command before the pipe

character (|) as the capture interface.

Example of piping router traffic to Wireshark via tcpdump

After executing the command above, Wireshark opens:

https://wiki.wireshark.org/MTU.md
https://wiki.wireshark.org/MTU.md
https://explainshell.com/explain?cmd=wireshark+-k+-i+-

\

Wireshark triggered

Next, the SSH client will prompt you to input your router password. Pasting it suffices:

SSH login successful. Now, tcpdump packet capture begins:

\

Meanwhile, Wireshark receives the piped traffic from tcpdump:

That’s it.

Conclusion

We have covered SSH, SCP, SFTP, SSH configuration commands such as ssh-agent,

ssh-add, and ssh-copy-id, and various SSH tunneling commands.

Here are some tips for using SSH more efficiently and securely:

\

● Disable X11 and TCP forwarding because attackers can use such weaknesses to

access other systems on your network. Change the options on sshd_config to be

AllowTcpForwarding no and X11Forwarding no.

● Change the default options on sshd_config, such as changing the default port

from 22 to another number.

● Authenticate clients using SSH certificates created with ssh-keygen.

● Use a bastion host with the help of tunneling commands.

● Restrict SSH logins to specific IPs, such as adding user filtering with the

AllowUsers option in sshd_config.

Thanks to its security measures and the ubiquity of networking tasks, SSH is indispensable

for computer data communications. Hence every student and professional in IT and cyber

security needs a working knowledge of SSH commands, and we hope this SSH cheat sheet

is a good starter or refresher for you.

To learn more about SSH and secure network administration, check out the following

courses from us:

● The Complete Cyber Security Course! Volume 3: Anonymous Browsing

○ https://courses.stationx.net/p/the-complete-cyber-security-course-

anonymous-browsing

● Secure Shell Fundamentals - Learn SSH By Configuring It

○ https://courses.stationx.net/p/secure-shell-fundamentals-learn-ssh-by-

configuring-it

● Linux Security and Hardening, The Practical Security Guide

○ https://courses.stationx.net/p/linux-security-and-hardening-the-practical-

security-guide

https://www.techrepublic.com/article/tips-securing-ssh-linux-servers/
https://courses.stationx.net/p/the-complete-cyber-security-course-anonymous-browsing
https://courses.stationx.net/p/the-complete-cyber-security-course-anonymous-browsing
https://courses.stationx.net/p/secure-shell-fundamentals-learn-ssh-by-configuring-it
https://courses.stationx.net/p/secure-shell-fundamentals-learn-ssh-by-configuring-it
https://courses.stationx.net/p/linux-security-and-hardening-the-practical-security-guide
https://courses.stationx.net/p/linux-security-and-hardening-the-practical-security-guide

