
\ 

 
 

 
 
 

 

 

 

 

 

 

 

 

What Is XPath? 

A popular functionality in web development is automation: the hands-free manipulation of a 

website's Document Object Model (DOM). If your target websites don’t support application 

programming interface (API) calls directly or via Hootsuite, Buffer, or Zapier, how do you 

write programs to locate web elements in your browser and act upon them? 

 

Here is where XPath plays a role. XPath, short for “XML Path Language,” is a compact way 

of teaching a web automation engine such as Selenium WebDriver to locate elements in an 

HTML source code document. 

 

XPath is compact because it represents nodes in an XML or HTML document as a directory 

path with forward slashes (/) as the main delimiter. Parking an XPath as a string rather than 

a standard selector path takes up less memory. Here’s the same HTML element represented 

both ways: 

 

Representation HTML element in question Character count 

Selector path on an element 
on a different XPath cheat 
sheet 

body > div.body-area 

> main > div:nth-

child(6) > div > 

div:nth-child(1) > 

div > pre > code > 

span:nth-child(3) 

110 

The corresponding XPath /html/body/div[1]/mai

n/div[6]/div/div[1]/d

iv/pre/code/span[3] 

61 

 

To demonstrate its compactness, the XPath string is only 55% the length of that of the 

selector path. 

XPath cheat sheet 

https://www.selenium.dev/
https://devhints.io/xpath#using-axes
https://devhints.io/xpath#using-axes


\ 

 
 

 
 
 

Prerequisites 

As amazing as XPath appears to be, learning XPath requires a working knowledge of HTML, 

CSS, and JavaScript/jQuery, and the ability to open the Inspector panel in your preferred 

browser: 

 

● Chrome Inspector (also applies to Chrome-based browsers such as Brave) 

● Firefox Inspector 

● Safari Web Inspector 

● Microsoft Edge Inspector 

 

If you’re confident in the above, following the examples in this XPath cheat sheet is easier. If 

not, bookmark this page and come back when you’re ready. 

 

Expressions/Queries 

XPath expressions include XPath queries, which typically refer to absolute and relative 

XPaths, and XPath function calls, which can be independent of an XML or HTML document. 

Make sure to distinguish XPath queries from XQuery, a query-based functional programming 

language outside this cheat sheet’s scope yet supports XPath. 

 

This XPath cheat sheet differs from what we’re used to writing because we’ve found the best 

way to learn XPath is by looking at multiple examples and intuitively deriving the XPath 

pattern from them. When in doubt, use this website to test out XPath queries. 

 

The table below presents static XPath examples, all extracted via the Inspector (see 

Prerequisites) from functional websites at the time of writing. The general XPath syntax 

follows later below. 

 

HTML element Selector path Relative XPath Absolute XPath 

<html> tag of an 

HTML document 

html /html /html 

<body> tag on a 

website 

body /html/body /html/body 

Title of a website head > title /html/head/titl

e 

/html/head/titl

e 

The modifiable 
titular text box on a 
to-do list website 

#title //*[@id="title"

] 

/html/body/div[

1]/input 

A blue “Verify you 
are human” button 

#challenge-

stage > div > 

input 

//*[@id="challe

nge-

stage"]/div/inp

ut 

/html/body/div[

1]/div/div[1]/d

iv/input 

“Share Feedback” 
button 
(DuckDuckGo) 

#web_content_wr

apper > 

div.serp__botto

m-right.js-

serp-bottom-

//*[@id="web_co

ntent_wrapper"]

/div[2]/div/div

/a 

/html/body/div[

2]/div[5]/div[2

]/div/div/a 

https://developer.chrome.com/docs/devtools/open/
https://firefox-source-docs.mozilla.org/devtools-user/page_inspector/how_to/open_the_inspector/index.html
https://developer.apple.com/safari/tools/
https://learn.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium/overview
https://docs.google.com/document/d/1hD5P-m5nEhkH-4s9_XbtNo2fxcjdQ7eDCLc25amIERA/edit#heading=h.szf05tco69br
https://scrapfly.io/blog/parsing-html-with-xpath/
https://listmoz.com/
https://duckduckgo.com/


\ 

 
 

 
 
 

right > div > 

div > a 

Dropdown button on 
a website menu 

#navbarDropdown

4 

//*[@id="navbar

Dropdown4"] 

/html/body/div[

1]/div/nav/div/

div[2]/div[1]/u

l/li[4]/a 

Hyperlink portion of 
a Google search 
result 

#rso > div:nth-

child(1) > div 

> div > 

div.Z26q7c.UK95

Uc.jGGQ5e > div 

> a > h3 

//*[@id="rso"]/

div[1]/div/div/

div[1]/div/a/h3 

/html/body/div[

7]/div/div[11]/

div/div[2]/div[

2]/div/div/div[

1]/div/div/div[

1]/div/a/h3 

 

Syntax 

 

We have a few observations from the table above: 

● The absolute XPath examples above begin with /html, the root (most basic, 

primitive parent) node of every HTML document. 

● All relative XPath expressions above begin with //*.  

○ Why not // as most other XPath resources say? 

○ The reason for * is that it’s a wildcard or placeholder for the node (HTML tag, 

in this case) in question, as you will see shortly. You may replace * with a 

suitable HTML tag, and the XPath will still work. 

● The format for getting a node with a particular ID is //*[@id="name-of-id"]. 

● The selector constraint [ ] distinguishes between different nodes sharing the 

same HTML tag by their indices, such as <div>. For example, div[2] refers to the 

second div sharing the same parent node. 

 

Hence the basic XPath syntax is as follows, reusing the to-do list example above: 

 

XPath type Basic XPath syntax Example 

Absolute /root_node/node1/node

2/…/nodeN 
/html/body/div[1]/inp

ut 

Relative //node1/node2/…/nodeN //body/div[1]/input 

Relative, node attribute 
carrying a value 

//nodeX[@attribute="v

alue"] 
//input[@id="title"] 

 

What Is An XPath Axis? 

 

The symbol @ in XPath expressions has to do with XPath axes. An XPath axis describes a 

relationship to the current node on the XML/HTML hierarchy tree. The two-colon syntax (::) 

specifies conditions on the axis. 

 

https://listmoz.com/


\ 

 
 

 
 
 

A step is an XPath segment between consecutive forward slashes (/), such as html in 

absolute paths. An axis can be a step. 

 

In the table below, we leave a cell empty if no corresponding abbreviation or equivalence 

relationship exists. Note the symbols for self/parent axes are similar to those of the 

current/parent directory in scripting languages. 

 

Axis Abbreviation … is short for … Description 
ancestor     Select all ancestors 

(parent, 
grandparent, etc.) of 
the current node 

ancestor-or-self     Select all ancestors 
(parent, 
grandparent, etc.) of 
the current node 
and the current 
node itself 

attribute @ @href == 
attribute::href 

Select all attributes 
of the current node 

child   div == 
child::div 

Select all children of 
the current node 

descendant     Select all 
descendants 
(children, 
grandchildren, etc.) 
of the current node 

descendant-or-self // // == 
/descendant-or-

self::node()/ 

Select all 
descendants 
(children, 
grandchildren, etc.) 
of the current node 
and the current 
node itself 

following     Select everything in 
the document after 
the closing tag of 
the current node 

following-sibling     Select siblings 
(nodes with the 
same parent node) 
below the current 
node 

namespace     Select all 
namespace nodes 
of the current node 

parent .. .. == 
parent::node() 

Select the parent of 
the current node 

preceding     Select all nodes that 
appear before the 
current node in the 
document, except 
ancestors, attribute 



\ 

 
 

 
 
 

nodes, and 
namespace nodes 

preceding-sibling   Select siblings 
(nodes with the 
same parent node) 
above the current 
node 

self . . == 
self::node() 

Select the current 
node 

 

This short table explains XPath wildcard symbols: 

 

XPath wildcard Description Example 
* Match element node //a/* 

@* Match attribute node; same 
as attribute::* 

//input[@*] 

node() Match node of any kind //head/node() 

text() Match text node, namely the 
content between <tag> and 
</tag> 

//title/text() 

comment() Match comment node <!-- 
… --> 

//footer//comment() 

processing-

instruction() 

Match any node of the 
format <?name value?>, 

e.g., <?xml catalog> 

//*/processing-

instruction() 

 

Selectors 

 

XPath selectors are where XPath expressions and CSS selectors intersect. The table below 

illustrates the relationship between XPath axes and their corresponding CSS selectors: 

 

XPath CSS selector 
//div/following-sibling::p div ~ p 

//h1/preceding-

sibling::[@id="wrong"] 

#wrong ~ h1 

//li/ancestor::ol ol > li 

//li/ancestor::ol[1] ol + li 

//ul[li] ul > li 

 

Order selectors enclose ordinal numbers or last() with the selector constraint [ ]: 

 

XPath with order selectors CSS selector 
//ul/li[1] ul > li:first-of-type 

//ul/li[2] ul > li:nth-of-type(2) 

//ul/li[last()] ul > li:last-of-type 

//p[1][@id="stuck"] p#stuck:first-of-type 

//*[1][name()="a"] a:first-child 

//*[last()][name()="a"] a:last-child 

 

https://www.w3schools.com/cssref/css_selectors.php


\ 

 
 

 
 
 

Attribute selectors focus on HTML tag attributes: 

 

XPath with attribute selectors CSS selector 
//video video 

//button[@id="submit"] button#submit 

//*[@class="coding"] .coding 

//input[@disabled] input:disabled 

//button[@id="ok"][@type="submit

"] 

button#ok[for="submit"] 

//section[.//h1[@id='intro']] section > h1#intro 

//a[@target="_blank"] a[target="_blank"] 

//a[starts-with(@href, '/')] a[href^='/'] 

//a[ends-with(@href, '.pdf')] a[href$='pdf']  

//a[contains(@href, '://')] a[href*='://'] 

//ol/li[position()>1] ol > li:not(:first-of-type) 

 

Pro tip: You can chain XPath selectors with consecutive selector constraints, but the order 

matters. For example, these two XPath queries have different meanings, as explained 

below: 

● //a[1][@href='/'] 

○ Get the first <a> tag and check its href has the value '/'. 

● //a[@href='/'][1] 

○ Get the first <a> with the given href. 

Predicates 

You can use logical operators in XPath queries: 

 

Operator Description Example 
| Union: join two XPath expressions //a | //span 

+ Addition 2 + 3 

- Subtraction 3 - 2 

* Multiplication 2 * 5 

div Division 5 div 2 

= Equal number(//p/text())=9.80 

!= Not equal number(//p/text())!=9.80 

< Less than number(//p/text())<9.80 

<= Less than or equal to number(//p/text())<=9.80 

> Greater than number(//p/text())>9.80 

>= Greater than or equal to number(//p/text())>=9.80 

or or //div[(x and y) or 

not(z)] 

and and //div[@id="head" and 

position()=2] 

mod Modulus (division remainder) 5 mod 2 



\ 

 
 

 
 
 

 

Functions 

The table below illustrates functions used in XPath expressions. Some, such as 

boolean(), are standalone XPath expressions. Some of the following appear in the 

examples above. 

 

Function Description Example 
name() Return the name of the node 

(e.g., HTML tag) 

//*/a/../name() 

text() Return the inner text of the node, 
excluding the text in child nodes 

//div[text()="Submit?

"]/*/text() 

lang(str) Determine whether the context 
node matches the given language 
(Boolean) 

//p[lang('en-US')] 

namespace-uri() Return a string representing the 
namespace URI of the first node 
in a given NodeSet. This function 
applies to XML documents. 

//*[@*[namespace-

uri()='http://foo.exa

mple.com']] 

count() Count the number of nodes in a 
NodeSet and return an integer 

//table[count(tr)=1] 

position() Return a number equal to the 
context position from the 
expression evaluation context 

//ol/li[position()=2] 

string() Convert an argument to a string string(//div) 

number() Convert an object to a number 
and return the number 

number(//img/@width) 

boolean() Evaluate an expression and 
return true or false. Use this to 
check for the existence of 
nodes/attributes. 

boolean(//div/a[@clas

s="button"]/@href) 

not(expression)  Evaluates Boolean NOT on an 
expression 

button[not(starts-

with(text(),"Submit")

)] 

contains(first, 

second) 

Determine whether the first 

string contains the second string 

(Boolean) 

//button[contains(tex

t(),"Go")] 

starts-

with(first, 

second) 

Check whether the first string 
begins with the second string 
(Boolean) 

//[starts-

with(name(), 'h')] 

ends-with(first, 

second) 

(Only supported in XPath 2.0; 
Selenium supports up to XPath 
1.0) 
 
Check whether the first string 
ends with the second string 
(Boolean) 

//img[ends-with(@src, 

'.png')] 

concat(x,y) Concatenate two or more strings 
x,y and return the resulting 

string. 
 

//div[contains(concat

(' ',normalize-

space(@class),' '),' 

foobar ')] 

https://developer.mozilla.org/en-US/docs/Web/XPath/Functions/lang


\ 

 
 

 
 
 

The example checks if the 
attribute foobar is part of a 

space-separated list. 
substring(given_

string, start, 

length) 

Return a part of a 
given_string beginning from 

the start value with a specified 
length 

substring("button", 

1, 3) 

substring-

before(given_str

ing,substring) 

Return a string that is part of a 
given_string before a given 
substring 

substring-

before("01/02", "/") 

substring-

after(str,substr

ing) 

Return a string that is part of a 
given_string after a given 
substring 

substring-

after("01/02", "/") 

translate() Evaluate a string and a set of 
characters to translate and return 
the translated string 

translate('The quick 

brown fox.', 

'abcdefghijklmnopqrst

uvwxyz', 

'ABCDEFGHIJKLMNOPQRST

UVWXYZ') 

normalize-

space() 

Remove redundant white space 
characters and return the 
resulting string 

normalize-space('  

hello  world   !   ') 

string-length() Return a number equal to the 
number of characters in a given 
string 

string-length('hello 

world') 

 

Pro tip: You can use nodes inside functions. Examples: 

● //ul[count(li) > 2] 

○ Check if the number of <li> tags inside the <ul> tag is greater than two. 

● //ul[count(li[@class='hide']) > 0] 

○ Check the number of <li> tags with class “hide” inside the <ul> tag is a 

positive integer. 

More Usage Examples 

Here’s how to extract data from a specific element: 

 

XPath Description 
//span/text() Get the inner text of the <span> tag. In the 

example below, "Click here" is the 

result. 
 
<span>Click here</span> 

//*/a[@id="attention"]/../name() Find the name of the parent element to an 
<a> tag with id="attention" 

//body//comment() Get the first comment under the <body> 

tag. 

 

Extracting data from multiple elements is straightforward. The following XPath expressions 

apply to the same HTML example: 

 



\ 

 
 

 
 
 

<div> 

  <a class="pink red" href="http://banks.io">oranges</a> 

  <a class="blue" href="http://crime.io">and lemons</a> 

  <a class="green" href="http://skyscraper.io">apple</a> 

  <a class="violet" href="http://leaks.io">honey</a> 

  <a class="amber" href="http://technology.io">mint</a> 

  <input type="submit" id="confirm">Go!</input> 

</div> 

 

XPath Description 
//a/@href Get the URLs (the href string value) in all <a> tags: 

 
http://banks.io 

http://crime.io 

http://skyscraper.io 

http://leaks.io 

http://technology.io 

//a/text() Get the inner text of all <a> tags: 

 
oranges 

and lemons 

apple 

honey 

mint 

//a/@class Get the classes of all <a> tags: 
 

pink red 

blue 

green 

violet 

amber 

 

The table below shows ways to extract data from an element based on its attribute value—

note the mandatory use of @ in the final step of each XPath query: 

 

XPath query Description 
//a[@href="http://skyscrape

r.io"]/@class 

Get the class in the <a> tag where the href 

string value is "http://skyscraper.io": 

 
green 

//*[contains(@class, 

"red")]/@href 

Get the URL (the href string value) in any tag 

with the class 'red': 

 
http://banks.io/ 

//input[@id="confirm"]/@typ

e 

Get the type attribute of an <input> tag with 

id="confirm": 

 
submit 

 

If you want to extract data from an element based on its position, check out these examples: 

 



\ 

 
 

 
 
 

XPath query Description 
//table/tbody/tr[3] Get the third <tr> element in a table 

//a[last()] Get the last <a> tag in the document 

//main/article/section[positi

on()>2]/h3 

Get the <h3> tags in all <section> tags after 

the second instance of <section> 

 

Now that you’ve made it to the last section of this cheat sheet, here are three real-life XPath 

examples of XPath in Selenium. 

 

1. Absolute XPath expressions to get the “Accept All Cookies” footer bar out of the way: 

● cookiespress="/html/body/div[1]/main/div/div/div/div/div[4]/di

v/div/div[2]/div/button[1]" 

● loginwith="/html/body/div[1]/main/div/div/div/div/div[1]/div[1

]/div[2]/form/div[1]/span" 

 
 

2. This relative XPath expression maps to a pop-up triggered when a user successfully posts 

to a certain social media platform: "//*[@class='Toastify__toast--success']" 

 

 

3. The following Python function handles XPath error messages "//span[data-

text='     error posting status, request failed with status code 

403/429']": 



\ 

 
 

 
 
 

 
 

Conclusion 

We hope this comprehensive XPath cheat sheet helps you accelerate your IT learning 

journey, especially in application development and security. You can read about XPath 

injection attacks and testing for it. For more information, check out our blog articles on 

coding and our resources on development, security, and operations (DevSecOps) below: 

 

https://courses.stationx.net/p/the-complete-application-security-course 

https://courses.stationx.net/p/cyber-security-python-and-web-applications 

https://courses.stationx.net/p/web-hacking-become-a-web-pentester 

 

https://learn.snyk.io/lessons/xpath-injection/javascript/
https://learn.snyk.io/lessons/xpath-injection/javascript/
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/07-Input_Validation_Testing/09-Testing_for_XPath_Injection
https://www.stationx.net/category/coding/
https://courses.stationx.net/p/the-complete-application-security-course
https://courses.stationx.net/p/cyber-security-python-and-web-applications
https://courses.stationx.net/p/web-hacking-become-a-web-pentester

