
\ 

 
 

 
 
 

 

 

 

 

 

 

 

 

Essential Commands 

With these commands, you can obtain critical information about your Unix machine and 

perform key operations. 

System Information 

These provide information about your Unix machine. 

uname Show the Unix system information. 
uname -a Detailed Unix system information 
uname -r Kernel release information, such as kernel version 
uptime Show how long the system is running and load information. 
who Display who is logged in. 
w Display what users are online and what they are doing. 
users List current users. 
whoami Display what user you are logged in as. 
su Superuser; use this before a command that requires root access e.g. 

su shutdown 

cal Show calendar where the current date is highlighted. 
date Show the current date and time of the machine. 
halt Stop the system immediately. 
shutdown Shut down the system. 
reboot Restart the system. 
last reboot Show reboot history. 
man COMMAND Shows the manual for a given COMMAND. To exit the manual, press 

“q”. 

 

Input/Output Redirection 

These are helpful for logging program output and error messages. 

Unix Commands Cheat Sheet 



\ 

 
 

 
 
 

echo TEXT Display a line of TEXT or the contents of a variable. 

echo -e TEXT Also interprets escape characters in TEXT, e.g. \n → new line, \b → 

backslash, \t → tab. 

echo -n TEXT Omits trailing newline of TEXT. 

cmd1 | cmd2 | is the pipe character; feeds the output of the command cmd1 and 

sends it to the command cmd2, e.g. ps aux | grep python3. 

cmd > file Output of cmd is redirected to file. Overwrites pre-existing content 

of file. 

cmd > 

/dev/null 

Suppress the output of cmd. 

cmd >> file Output of cmd is appended to file. 

cmd < file Input of cmd is read from file. 

cmd << delim Input of  cmd is read from the standard input with the delimiter 

character delim to tell the system where to terminate the input. 

Example for counting the number of lines of ad-hoc input: 
wc -l << EOF 

> I like 

> apples 

> and 

> oranges. 

> EOF 

       4 

Hence there are only 4 lines in the standard input delimited by EOF. 

 

File Management 

In the following commands: X may refer to a single file, a string containing a wildcard symbol 

referring to a set of multiple files e.g. file*.txt, or the stream output of a piped command 

(in which case the syntax would be X | command instead of command X); Y is a single 

directory; A and B are path strings of files/directories. 

 

* Wildcard symbol for variable length, e.g. *.txt refers to all files with 

the TXT extension. 
? Wildcard symbol referring to a single character, e.g. Doc?.docx can 

refer to Doc1.docx, DocA.docx, etc. 

ls List the names of files and subfolders in the current directory. 
Options include -l, -a, -t which may be combined e.g. -alt. 

ls -l Also show details of each item displayed, such as user permissions 
and the time/date when the item was last modified. 

ls -a Also display hidden files/folders. May be combined with ls -l to 

form ls -al. 

ls -t Sort the files/folders according to the last modified time/date, starting 
with the most recently modified item. 

ls X  List the files  
cd Y Change directory to Y. Special instances of Y: 

.  — current directory 

.. — parent directory 

cd To the $HOME directory 

cd .. Up one level to enclosing folder / parent directory 



\ 

 
 

 
 
 

cd /etc To the /etc directory 

cmp A B Compare two files A and B for sameness. No output if A and B are 

identical, outputs character and line number otherwise. 
diff A B Compare two files A and B for differences. Outputs the difference. 

pwd Display the path of the current working directory. 
mkdir X Make a new directory named X inside the current directory. 

mv A B Move a file from path A to path B. Also used for renaming files. 

Examples: 
- Moving between directories folder1 and folder2: 

mv ./folder1/file.txt ./folder2 

The file name will remain unchanged and its new path will be 
./folder2/file.txt. 

- Renaming a file: mv new_doc.txt expenses.txt 

The new file name is expenses.txt. 

cp A B Copy a file from path A to path B. Usage similar to mv both in moving 

to a new directory and simultaneously renaming the file in its new 
location. 
 
Example: cp ./f1/file.txt ./f2/expenses.txt 

simultaneously copies the file file.txt to the new location with a 

new name expenses.txt. 

cp -r Y Z Recursively copy a directory Y and its contents to Z. If Z exists, copy 

source Y into it; otherwise, create Z and Y becomes its subdirectory 

with Y’s contents 

rm X Remove (delete) X permanently. 

rm -r Y Recursively delete a directory Y and its contents 

rm -f X Forcibly remove file X without prompts or confirmation 

rm -rf Y Forcibly remove directory Y and its contents recursively 

rmdir Y Remove a directory Y permanently, provided Y is empty. 

du Show file/folder sizes on disk. 
du -ah Disk usage in human readable format (KB, MB etc.) 
du -sh Total disk usage of the current directory 
df Display free disk space. 
du -h Free and used space on mounted filesystems 
du -i Free and used inodes on mounted filesystems 
open X Open X in its default program. 

open -e X Opens X in the default text editor (macOS: TextEdit) 

touch X Create an empty file X or update the access and modification times 

of X. 

cat X View contents of X. 

cat -b X Also display line numbers as well. 
wc X Display word count of X. 

head X Display the first lines of X. If more than a single file is specified, each 

file is preceded by a header consisting of the string "==> X <=='' 

where "X'' is the name of the file. 

head -n 4 X Show the first 4 lines of X. 

ls *.c | head 

-n 5 

Display the first 5 items of a list of *.c files in the current directory. 

tail X Display the last part of X. If more than a single file is specified, each 

file is preceded by a header consisting of the string "==> X <=='' 

where "X'' is the name of the file. 



\ 

 
 

 
 
 

tail -n +1 X Display entire contents of the file(s) X specified, with header of 

respective file names 
less Read a file with forward and backward navigation. Often used with 

pipe e.g. cat file.txt | less 

ln -s A S Create symbolic link of path A to link name S. 

 

Search and Filter 

 

grep patt X Search for a text pattern patt in X. Commonly used with pipe e.g. 

ps aux | grep python3 filters out the processes containing 

python3 from all running processes of all users. 

grep -v patt 

X 
Return lines not matching the specified patt. 

grep -l patt 

X 

Only the names of files containing patt are written to standard 

output. 
grep -i patt 

X 

Perform case-insensitive matching. Ignore the case of patt. 

find Find files. 
find 

/path/to/src 

-name "*.sh" 

Find all files in /path/to/src matching the pattern "*.sh" in the 

file name. 

find .. -size 

+2M 
Find all files in the parent directory larger than 2MB. 

locate name Find files and directories by name. 

 
sort X Arrange lines of text in X alphabetically or numerically. 

 

Archives 

 

tar Manipulate archives with TAR extension. 
tar -cf 

archive.tar Y 

Create a TAR archive named archive.tar containing Y. 

tar -xf 

archive.tar 

Extract the TAR archive named archive.tar. 

tar -tf 

archive.tar 

List contents of the TAR archive named archive.tar. 

tar -czf 

archive.tar.g

z Y 

Create a gzip-compressed TAR archive named archive.tar.gz 

containing Y. 

tar -xzf 

archive.tar.g

z 

Extract the gzip-compressed TAR archive named 
archive.tar.gz. 

tar -cjf 

archive.tar.b

z2 Y 

Create a bzip2-compressed TAR archive named archive.tar.bz2 

containing Y. 

tar -xjf 

archive.tar.b

z2 

Extract the bzip2-compressed TAR archive named 
archive.tar.bz2. 



\ 

 
 

 
 
 

zip -r Z.zip 

Y 

Zip Y to the ZIP archive Z.zip. 

unzip Z.zip Unzip Z.zip to the current directory. 

File Transfer 

These are for uploading and downloading files. 

ssh 

user@access 

Connect to access as user. 

ssh access Connect to access as your local username. 

ssh -p port 

user@access 

Connect to access as user using port. 

scp 

[user1@]host1

:[path1] 

[user2@]host2

:[path2] 

Login to hostN as userN via secure copy protocol for N=1,2. 

path1 and path2 may be local or remote. If user1 and user2 are 

not specified, your local username will be used. 

scp -P port 

[user1@]host1

:[path1] 

[user2@]host2

:[path2]  

Connect to hostN as userN using port for N=1,2. 

scp -r 

[user1@]host1

:[path1] 

[user2@]host2

:[path2] 

Recursively copy all files and directories from path1 to path2. 

sftp 

[user@]access 

Login to access as user via secure file transfer protocol. If user is 

not specified, your local username will be used. 
sftp access Connect to access as your local username. 

sftp -P port 

user@access 

Connect to access as user using port. 

 

File Permissions 

Not all files are equally accessible. To prevent unwanted tampering, some files on your 

device may be read-only. For more information about file permissions on Unix, refer to our 

Linux File Permissions Cheat Sheet, as the same content applies to Unix. 

 
chmod permission file Change permissions of a file or directory. Permissions 

may be of the form [u/g/o/a][+/-/=][r/w/x] (see 

examples below) or a three-digit octal number. 

https://www.stationx.net/linux-file-permissions-cheat-sheet/


\ 

 
 

 
 
 

chown user2 file Change the owner of a file to user2. 

chgrp group2 file Change the group of a file to group2. 

 

Usage examples: 

● chmod +x testfile → allow all users to execute the file 

● chmod u-w testfile → forbid the current user from writing or changing the file 

● chmod u+wx,g-x,o=rx testfile → simultaneously add write & execute 

permissions to user, remove execute permission from group, and set the permissions 

of other users to only read and write. 

Numeric Representation 

 

Octal Permission(s) Equivalent to application 
of 

0 No permissions -rwx 

1 Execute permission only =x 

2 Write permission only =w 

3 Write and execute permissions only: 2 + 1 = 3 =wx 

4 Read permission only =r 

5 Read and execute permissions only: 4 + 1 = 5 =rx 

6 Read and write permissions only: 4 + 2 = 6 =rw 

7 All permissions: 4 + 2 + 1 = 7 =rwx 

 

Examples 

● chmod 777 testfile → allow all users to execute the file 

● chmod 177 testfile → restrict current user (u) to execute-only, while the group 

(g) and other users (o) have read, write and execute permissions 

● chmod 365 testfile → user (u) gets to write and execute only; group (g), read 

and write only; others (o), read and execute only. 

Process Management 

The following is redolent of functions in Windows’ Task Manager, but on the command line. 

& Add this character to the end of a command/process to run it in the 
background. 

ps Show process status. Often used with grep e.g. ps aux | grep 

python3 displays information on processes involving python3. 

Meaning of aux: 

a = show processes for all users 

u = show user or owner column in output 

x = show processes not attached to a terminal 

ps -e 

ps -A 

Either of these two commands prints all running processes in the 
system. 

ps -ef Print detailed overview. 
ps -U root -u 

root 

Display all processes running under the account root. 



\ 

 
 

 
 
 

ps -eo 

pid,user,comm

and 

Display only the columns PID, USER and COMMAND in ps output. 

top Display sorted information about processes. 
kill PID Kill a process specified by its process ID PID, which may be obtained 

using the ps command. 

lsof List all open files on the system. (This command helps you pinpoint 
what files and processes are preventing you from successfully 
ejecting an external drive.) 

 

Networking 

These commands regulate how your Unix machine communicates with other computers, 

such as the local area network (LAN) router or external websites. 

ifconfig Display all network interfaces with IP addresses 
netstat Print open sockets of network connections, routing tables, interface 

statistics, masquerade connections, and multicast memberships 
 
This command is often piped with the less command: 

e.g. netstat -a | less 

netstat -a Show both listening and non-listening sockets. 
netstat -l Show only listening sockets, which are omitted by default. 
ping host Send ICMP echo request to host, which may be a symbolic name, 

domain name or IP address. 
whois domain Display whois information for domain. 

dig domain Display DNS information for domain. 

host domain Display DNS IP address for domain. 

wget LINK Download from location LINK. 

curl LINK Display the HTML source of LINK. 

Vi Editor - Basic Commands 

Built into Unix systems, vi (or vim) is a command-line visual editor. For simple text file 

manipulation, the following commands will suffice. 

 

In the Unix terminal: 

vi X Create a new file X in the vi editor, or open X if X already exists. 
vi -R X 

view X 

Open an existing file X in read-only mode. 

 

While using vi editor (command mode): 

 

:q Quit the vi editor. 

:q! Quit the vi editor without saving changes. 

:w Save changes. 



\ 

 
 

 
 
 

:w filename Save the file as filename. 

:wq Save changes and quit vi editor. 

i Enter insert mode and amend the opened file. To return to command 
mode and use the other commands in this table, press the ESC key. 

o Enter insert mode and add a new line underneath the cursor. 

x Delete the character under the cursor location. 

dd Delete the line where the cursor is located. 

r Replace the character under the cursor location with the key the user 
presses next. 

yy Copy the current line. 

p Paste the line that was copied beneath the cursor. 

0 Go to the beginning of the line. 

$ Go to the end of the line. 

h,j,k,l Move the cursor left, down, up, right respectively. 

G Jump to the first character of the last line of the file. 

gg Jump to the first character of the first line of the file. 

/foo Search for instances of “foo” in the open file. 

:%s/foo/bar Replace every instance of “foo” with “bar” in the open file. 

 

Shell Programming - Basic Commands 

The file extension for shell scripts is .sh. 

 

echo $VAR Display the contents of a variable. 
read VAR Get standard input and save it to variable VAR. 

# Designates all text after # on the same line to be comments (not 

executed). 
#!/bin/sh Alert the system that a shell script is being executed. Used as the 

first line of the shell script. 

Variables 

Valid Shell variable names contain alphanumeric [A-Z, a-z, 0-9] characters and/or 

underscore (_). The variable must begin an alphabetical character and is usually uppercase. 

 

VAR_NAME=VALUE Define a variable VAR_NAME and give it a VALUE. The value 

may be a number or string enclosed with ". Examples: 



\ 

 
 

 
 
 

PRICE=100 
PERSON="John Smith" 

readonly VAR_NAME Make the variable VAR_NAME read-only. 

unset VAR_NAME Delete the variable VAR_NAME. 

$VAR1$VAR2 Concatenate the values of the variables $VAR1 and $VAR2. 

Reserved Variables 

By using any of the following in your shell scripts, you call values from special variables in 

Unix. 

$0 File name of the current shell script. 
$1, $2, $3, …, 

${10}, ${11}, … 

References to the arguments supplied to the script: $1 is 

the first argument, $2 is the second argument, and so on. 

$# The number of arguments supplied to a script. 
$* Refer to arguments separated by spaces. Here, "a b c" 

d e are considered 5 separate arguments. 

"$@" Refer to arguments grouped by the double quotes enclosing 
them. Here, "a b c" d e are considered 3 arguments. 

$? The exit status of the last command executed: 0 for success 
and 1 or other numbers for various errors. 

$$ Process ID of the shell script. 
$! Process number of the last background command. 

Arrays 

ksh: set -A ARRAY_NAME value1 value2 ... valueN 

bash: ARRAY_NAME=(value1 ... valueN) 

 

Accessing array values (zero-indexed, i.e. first element is at [0] not [1]): 

${ARRAY_NAME[index]} Display the value at [index] of ARRAY_NAME. 

${ARRAY_NAME[*]} Display all values of the array ARRAY_NAME. 

${ARRAY_NAME[@]} Same as ${ARRAY_NAME[*]}. 

Basic Operators 

These are used in the expressions in decision making and loop control. 

 

For arithmetic and relational operators, the arguments are applied to both sides of each 

operator, separated by spaces, e.g. 2 + 2 (not 2+2). 

 

Arithmetic operator Description 
+ Addition 
- Subtraction 
* Multiplication 
/ Division 
% Modulus 
= Assignment 
== Equality 
!= Inequality 

 



\ 

 
 

 
 
 

Relational operator Description 
-eq Equal to 
-ne Not equal to 
-gt Greater than 
-lt Less than 
-ge Greater than or equal to 
-le Less than or equal to 

 

Boolean operator Description 
! Logical negation / not: inverts true/false condition 
-o Logical OR (inclusive): returns true if any one of the operands 

is true 
-a Logical AND: returns true if all operands are true 

 

String operator Description 
= Returns true if the two operands on both sides of = are equal. 

!= Returns true if the two operands on both sides of = are not 

equal. 
-z $STRING_VAR Returns true if $STRING_VAR is zero in length. 

-n $STRING_VAR Returns true if $STRING_VAR is not zero in length. 

[ $STRING_VAR ] Returns true if $STRING_VAR is not the empty string. 

 

In the following, FILE is a variable containing a string to a file/directory path. 

File operator Description 
-d $FILE Returns true if FILE is a directory. 

-f $FILE Returns true if FILE is an ordinary file as opposed to a 

directory or special file. 
-r $FILE Returns true if FILE is readable. 

-w $FILE Returns true if FILE is writable. 

-x $FILE Returns true if FILE is executable. 

-e $FILE Returns true if FILE exists, even if fiFILEle is a directory. 

-s $FILE Returns true if FILE size is greater than zero. 

Decision Making 

 

Types Syntax 
if…fi if [ expression ]  

then  

   Statement(s) to be executed if expression is true  
fi 

 

if…else…

fi 

if [ expression ] 

then 

   Statement(s) to be executed if expression is true 
else 

   Statement(s) to be executed if expression is false 
fi 

if…elif…

else…fi 

if [ expression1 ] 

then 

   Statement(s) to be executed if expression1 is true 



\ 

 
 

 
 
 

elif [ expression2 ] 

then 

   Statement(s) to be executed if expression2 is true 
elif [ expression3 ] 

then 

   Statement(s) to be executed if expression3 is true 
else 

   Statement(s) to be executed if none of the given expressions is true 
fi 

case…esa

c 

case word in 

   pattern1) 

      Statement(s) to be executed if pattern1 matches word 
      ;; 

   pattern2) 

      Statement(s) to be executed if pattern2 matches word 
      ;; 

   pattern3) 

      Statement(s) to be executed if pattern3 matches word 
      ;; 

   *) 

     Default condition to be executed 
     ;; 

esac 

Loop Control 

 

Loop type Syntax 
for for VAR in word1 word2 … wordN 

do 

   Statement(s) to be executed for every word. 
done 

 
Note: word1 word2 … wordN may be a list of numbers (e.g. 1 2 3 4 5) 

or a set of paths (e.g. /home/folder*/app/). 

while while command 

do 

   Statement(s) to be executed if command is true 
done 

 

Infinite loop: use : as the command, i.e. while :. 

until until command 

do 

   Statement(s) to be executed until command is true 
done 

select Available in ksh and bash but not sh. Behaves like a for-loop with the 

numbers replaced by the words. 

 
select VAR in word1 word2 ... wordN 

do 

   Statement(s) to be executed for every word. 
done 

 



\ 

 
 

 
 
 

Flow 
control 

Syntax 

break Exit a loop. 
continue Exit the current iteration of the loop and proceed with the next iteration. 

Ctrl+C Key combination to abort a running process 

Ctrl+L Key combination to remove the previous command and its output 

 

Conclusion 

This article covers all the basic commands you need to know when learning to operate Unix 

from the command line. We hope this Unix command cheat sheet is an excellent addition to 

your programming and cybersecurity toolkit. See Unix commands in action with our 

Complete Cyber Security Course available with a StationX VIP membership. 

 

https://www.stationx.net/vip-membership

