
PYTHON VS MODERN
DEFENSES

13th of August 2022

DEFCON30 – Adversary Village

whoami
Diego Capriotti @naksyn

⦿ Offensive Cyber Security Team Lead @ Axians Italy

⦿ ITA Army veteran Engineer Officer

⦿ Past roles: Electronic Warfare, Cyber Security

⦿ Side interests: playing chess, tinkering with Software Defined Radios

2

Python vs Modern Defenses

⦿Modern Defenses – Basic Concepts

⦿A Bypass Strategy

⦿Leveraging Python

3

MODERN DEFENSES
Basic concepts

1

MODERN DEFENSES – Basic
concepts

⦿ EDR Visibility

⦿ Memory Scanning

⦿ ML-based detection

⦿ IoC and IoA-based detection

5

EDR VISIBILITY

6

To Detect and Respond you must first see what’s happening
on a system. EDRs get data from optics available on target
OS and also employ proprietary techniques.

7

EDR VISIBILITY

⦿ Using Kernel Callbacks to:
• Inject EDR’s dll into new processes
• Getting process tree information
• Getting image loading events

⦿ Using Usermode Hooks to:
• Inspect Windows API calls

Two common ways of increasing visibility on Windows

8

EDR VISIBILITY – Kernel callbacks
explorer.exe

syscall table

Nt!NtCreateProcess

usermode

kernelmode
PsSetCreateProcessNotify

EDR driver

EDR process

injects dll into
malware.exe

address space
and ntdll.dll is patched

EDR.dll

NtCreatePocess
ntdll

CreateProcessW
kernel32

Callback function is triggered

9

EDR VISIBILITY – Usermode Hooks
malware.exe

VirtualAllocEx
kernel32

NtAllocateVirtualMemory
ntdll

syscall table

Nt!NtAllocateVirtualMemory

usermode

kernelmode

jmp

EDR.dll

is it malicious?

no

yes

terminatesyscall

MEMORY SCANNING

10

In-memory scanning techniques look for patterns in the code
and data of processes. Scanning is resource intensive and
could be periodic or triggered by events/conditions/analysts.

11

MEMORY SCANNING
⦿ Inner workings of AV/EDR are undisclosed

⦿ Examples of triggered scans:

• Unusual process-tree

• Suspicious binary (ML detection)

• Unusual sequence of API-calls

• Unusual access to files/process handles

• Suspicious traffic (amount, type, reputation)

https://www.artstation.com/artwork/vBJx6

12

MEMORY SCANNING
⦿ Common malicious indicators detected by memory scanning:
• Known-bad signature-based IoC
• Reflectively loaded Dlls
• Injected threads
• RWX permissions
• Inline/IAT/EAT hooking
• modules with modified/unmatching PE header
• implanted PE files (manually loaded, not corresponding to

any legitimate module)
⦿ Great tools: @hasherazade’s PeSieve
@forestorr’s Moneta

ML-based Detection

13

Machine Learning can detect variant malware files that can
evade signature-based detection. Malware possesses
several “features” that can be used for training machine
learning models.

Moon et al. - Compact feature hashing for machine learning based malware detection

14

ML-based Detection
Essentially, the workflow we follow to build any machine
learning-based detector, including a decision tree, boils down to
these steps:
• Collect example of malware and goodware […]
• Extract features from each training example to represent the

example as an array of numbers[…]
• Train the ML system to recognize malware using the features

we extracted
• Test the approach […]

Malware Data Science: Attack Detection and Attribution (2018) - Joshua Saxe

15

ML-based Detection

Some features used to determine wether a file is good or bad:
• Wether it’s digitally signed
• The presence of malformed headers
• The presence of encrypted data
• Wether it has been seen on more than 100 network

workstations

Lots of different features are used in ML detection

Malware Data Science: Attack Detection and Attribution (2018) - Joshua Saxe

What if a binary commonly classified as
benignware is used maliciously?
What if it’s also widely used for legit
custom applications?

16

IoC and IoA-based detection

17

An Indicator of Compromise (IoC) is digital evidence that a
cyber incident has occurred. An Indicator of Attack (IOA) is
digital or physical evidence that a cyberattack is likely to
occur.
IoC is static, IoA is dynamic.

IoC and IoA-based detection

18

IoC is retroactive

IoC provides forensic intelligence but can’t help detect an
attack attempt. Signatures also generates instances of false
positives.

IoC and IoA-based detection

19

IoA is proactive

IoA can detect a threat not characterized by static signatures.
Does not provide sufficient forensic intelligence.

What if an attacker is directly launching
a widely used signed binary (AKA
LOLbin) and operations are done
natively from that process?

20

A BYPASS STRATEGY

2

A BYPASS STRATEGY

⦿ Main Categories of EDR Evasion

⦿ Constraints

⦿ Strategy

22

23

Main Categories of EDR evasion
⦿ Avoiding the EDR

• proxying traffic or pure avoidance

⦿ Blending into the environment

⦿ EDR tampering

⦿ Operating in blind spots

• Exploiting lack of visibility

24

MemoryScanning

ML-baseddetection Usermode

hooking

Kernel

Callbacks

IoC & IoA

NetworkInspection

Other Unknown Proprietary Techinques

OffensiveTTPs
Offensive

Tools

Alerts

Dumps

ProcessTermination

Attacker’s
Pyramid of
Pain

File deletion

Legit

Tools
Legitusage

Operating by blending in 2

Operating under alerting1

Operating in blind spots3

25

Constraints
⦿ Operational Scenario/limitations:
• Operations done from an EDR-equipped box
• No remote process Injections
• No dropping on disk custom/unknown artifacts
• C2 agent execution is a last resort

⦿ Desired capabilities:
• Dynamic module loading
• Compatibility with community-driven tools
• Traffic tunneling without spawning new processes

26

Strategy

⦿ Operating in EDR’s blind spots
• Choose a set of common non-native

languages
• Exclude languages that can natively provide
optics to EDRs.
• embeddable packages are desirable
• how much existing tooling can be reused?
• Check if capabilities can be developed

Choosing the language

27

Strategy
Choosing the language

⦿ Python language has several benefits:
• Python >3.7 comes with an «Embeddable zip package»
• Signed interpreter
• Limited visibility of python code execution for EDRs
• Lots of offensive tooling available
• The interpreter natively runs API calls AKA “lot of

different telemetry coming from the same binary”

LEVERAGING PYTHON
3

LEVERAGING PYTHON

⦿ Execution Method
⦿ Dynamically Importing Python Modules
• Bloodhound-python and impacket

⦿ Using BOFs with Python
• Dumping lsass with nanodump

⦿ In-process tunneling
• Listen, I really need to run an agent!

29

https://github.com/naksyn/Pyramid

30

Execution Method
⦿ Dropping “Python Embeddable Package” and running

python.exe (or pythonw.exe) directly.
• less probability of triggering IoAs and IoCs – no

uncommon process tree patterns.
• less probability of triggering ML detection - signed files
• No visibility for dynamic code execution for stock

python.exe - ref. PEP-578 – Python Runtime Audit
Hooks

31

Execution Method
Lack of visibility

• PEP-578 Runtime Audit Hooks – introduced to “solve” the limited context for
Python code

32

Execution Method
Why no visibility?

⦿ PEP-578 audit hooks are not
enabled in stock python.exe

⦿ deploying PEP-578 is complex

33

Dynamically Importing Python Modules

⦿ Been around for quite some time

⦿ Amazing prior work done by @scythe_io (in-memory

Embedding of CPython), @xorrior (Empyre),

@n1nj4sec (pupy), @ajpc500 (Medusa)

• Each project has its own goals and design choices

34

Dynamically Importing Python Modules
⦿ PEP 302 – New Import Hooks
• import hooks allow you to modify the logic in which Python

modules are located and how they are loaded.
• involves defining a custom “Finder” class and either adding

finder objects to sys.meta_path
• sys.meta_path holds entries that implement Python’s

default import semantics

35

Dynamically Importing Python Modules
⦿ Using Import Hooks we can:
• Use a custom Finder class
• In-memory download a Python package as a zip
• Add the zip file finder object to sys.meta_path
• Import the zip file in memory

⦿ Problems:
• Python module dependencies nightmare
• In-memory Dynamic loading of *.pyd extensions is not

natively supported

36

Dynamically Importing Python Modules
⦿ Dynamic Loading used in Pyramid:
• Based on @xorrior Empyre Finder class
• uses fixed packages dependencies to in-memory import

impacket, bloodhound-python and paramiko

37

Dynamically Importing Python Modules

Normal behavior for
Importing a pyd file

on disk

38

Dynamically Importing Python Modules
⦿ How the problems were solved in Pyramid:
• Python module dependencies nightmare : solved by

providing fixed dependencies packages
• *.pyd In-memory loading would require re-engineering

the CPython interpreter losing its digital signature. An
acceptable solution – per our scenario – would be
dropping on-disk the official Pypy Wheels containing the
needed pyd files and maintain normal loading behaviour.

39

Demo

Python.exe Python script
“base”

Fixed
Dependencies

Dynamically importing and executing
BloodHound-Python

In-memory downloads and executes

Downloads and drops required pyd files

In-memory downloads and imports

Executes BH or secretsdump

40

Demo Dynamically importing and executing
BloodHound-Python

41

Demo Dynamically importing and executing
Impacket secretsdump

42

Using Beacon Object Files with Python
⦿ BOFs are a way to rapidly extend the Cobalt Strike’s

Beacon agent with new post-exploitation features by
executing a compiled C program withing the Beacon
process.

⦿ Lot of amazing community-driven BOFs are available
⦿ Achieving a way to execute BOFs with one’s own technique

or C2 is a great way to augment capabilities.

43

Using Beacon Object Files with Python
⦿ Feature implemented in Pyramid tool:
• leverages @trustedsec COFFloader and @falconforce

bof2shellcode
• Complex BOFs such as nanodump should be modified to

be compatible
• COFF loader is converted to shellcode and BOF is

appended
• resulting shellcode can be dynamically injected with

Python into python.exe achieving in-process BOF
execution.

44

Using Beacon Object Files with Python

Modified
COFFLoader
(shellcode)

BOF

Magic
Header
+ BOF
length

bof2shellcode output

• COFFloader (shellcode) looks for the BOF in memory via
the magic header and 4-byte integer length.

• BOF is then fed to COFFLoader
• command line arguments are parsed (can be unstable)

45

Using Beacon Object Files with Python

46

Using Beacon Object Files with Python

⦿ We can dump lsass using @helpsystems nanodump but we
need to modify the BOF by:
• Stripping internal Beacon API calls
• Hardcoding command line parameters to increase

stability
• Stripping cmd line parsing functions

⦿ Compile the BOF, then use bof2shellcode
⦿ Inject the shellcode blob into python.exe natively using

Python

47

Demo

Python.exe Python script
“base-bof”

In-memory downloads and executes

Injects bof2shellcode
to execute nanodump BOF

Injecting shellcode within python.exe to achieve BOF execution
and dumping lsass Using process forking

48

Demo
Injecting shellcode within python.exe to achieve BOF execution
and dumping lsass Using process forking

49

In-process agent tunneling
⦿ Agent tunneling can be useful to:
• Decouple agent communications with real C2
• Blend-in with SSH instead of HTTP/S or DNS
• Exploit the signed python.exe context to mask C2
• Create reusable agent payloads with 127.0.0.1 as C2 host
• Make C2 server not easily reachable from the internet

⦿ Mind your OPSEC
• SSH credentials are stored in python.exe memory – use

at least burnable-temporary creds and whitelist IPs on
SSH server

50

Demo

Python.exe Python script
“base-tunnel”

Fixed
Dependencies

Dynamically importing and executing
BloodHound-Python

In-memory downloads and executes

Downloads and drops required pyd files

In-memory downloads and importsExecutes SSH local port forward in a
new thread

Injects and executes Cobalt Strike Beacon
Stager (tunneled)

51

Demo
In-process tunneling a Cobalt Strike Beacon with Python

52

Conclusions
⦿ The main takeaways for the talk are:
• You can use Python Language to dynamically execute

Python tools without falling into EDR visibility.
• Python Embeddable package provide an “attack avenue”

with a signed context under which an attacker can
operate.

• Python interpreter has a huge “telemetry fingerprint” so
it can be difficult for EDRs to spot anomalies coming from
it.

• You can execute BOFs, dynamic code and in-process
tunneling from within python.exe increasing the chances
of not being detected.

THANKS!
Any questions?

You can find me on:

Twitter: @naksyn

Discord: naksyn#9538

53

54

References
https://synzack.github.io/Blinding-EDR-On-Windows/
https://www.ibs.it/malware-data-science-attack-detection-libro-inglese-joshua-saxe-hillary-
sanders/e/9781593278595
https://github.com/forrest-orr/moneta
https://github.com/hasherezade/pe-sieve
https://www.upguard.com/blog/what-are-indicators-of-attack#toc-2
https://www.xorrior.com/In-Memory-Python-Imports/
https://github.com/EmpireProject/EmPyre
https://www.scythe.io/library/an-in-memory-embedding-of-cpython-with-scythe
https://peps.python.org/pep-0578/
https://peps.python.org/pep-0302/
https://utcc.utoronto.ca/~cks/space/blog/python/ZipimportAndNativeModules
https://www.sciencedirect.com/science/article/pii/S240595952100093X
https://github.com/helpsystems/nanodump
https://github.com/FalconForceTeam/BOF2shellcode
https://medium.com/falconforce/bof2shellcode-a-tutorial-converting-a-stand-alone-bof-loader-into-
shellcode-6369aa518548

www.slidescarnival.com

https://synzack.github.io/Blinding-EDR-On-Windows/
https://www.ibs.it/malware-data-science-attack-detection-libro-inglese-joshua-saxe-hillary-sanders/e/9781593278595
https://github.com/forrest-orr/moneta
https://github.com/hasherezade/pe-sieve
https://www.upguard.com/blog/what-are-indicators-of-attack
https://github.com/EmpireProject/EmPyre
https://www.scythe.io/library/an-in-memory-embedding-of-cpython-with-scythe
https://peps.python.org/pep-0578/
https://peps.python.org/pep-0302/
https://utcc.utoronto.ca/~cks/space/blog/python/ZipimportAndNativeModules
https://www.sciencedirect.com/science/article/pii/S240595952100093X
https://github.com/helpsystems/nanodump
https://github.com/FalconForceTeam/BOF2shellcode
https://medium.com/falconforce/bof2shellcode-a-tutorial-converting-a-stand-alone-bof-loader-into-shellcode-6369aa518548
http://www.slidecarnival.com/

