I PYTHON VS MODERN

DEFENSES

13th of August 2022

N30 — Adversary Village %@WEEE%EHB
UILLRACEYE]C

whoami
Diego Capriotti @naksyn

@ Offensive Cyber Security Team Lead @ Axians Italy
@ ITA Army veteran Engineer Officer
@ Past roles: Electronic Warfare, Cyber Security

@ Side interests: playing chess, tinkering with Software Defined Radios

ADUERSHRY (D JF
UL PREEI|CON| ,

ython vs Modern Defenses

@Modern Defenses — Basic Concepts

@I-\ Bypass Strategy

@ Leveraging Python

ADUERSHARY(D JF
U PREE.®|CON| 5

MODERN DEFENSES

Basic concepts

ADUERSARY
UIL &ﬂ@ﬁ El

FENSES - Basic

@ EDR Visibility

@® Memory Scanning

@® ML-based detection

@ loC and loA-based detection

ADUERSHRY (D JF
UIPREE 2 (CON| -

To Detect and Respond you must first see what's happening
on a system. EDRs get data from optics available on target
0S and also employ proprietary techniques.

FABUERSHARY|DJF
UTEPRAEE®|CON|

ISIBILITY

Two common ways of increasing visibility on Windows

@ Using Kernel Callbacks to:
* Inject EDR’s dll into new processes
» (Getting process tree information
» (Getting image loading events

@® Using Usermode Hooks to:
* Inspect Windows API calls

ADUERSHRY(D
LI PREE 2| C

F

7

ISIBILITY - Kernel callbacks

[explorer.exe] ~
, injects dll into [EDR.dII]

malware.exe \

address space \

CreateProcessW | _
[kernel32] and ntdll.dll is patched :
[EDR process]
NtCreatePocess
ntdll |
usermode :,
kernelmode v

PsSetCreateProcessNotif\]

[syscall table]

[EDR driver

[Nt!NtCreateProcess] %%%%S&Egg ﬁ

ISIBILITY — Usermode Hooks

[malware.exe] EDR.dII]
VirtualAllocEx
kernel32

\\{/es

. no
NtAllocateVirtualMemory;,,,
ntdll syscall usermode [terminate]

kernelmode

[syscall table]

A 4

[Nt!NtAIIocateVirtuaIMemorv] %%%%E&Egg F 9

ANNING

In-memory scanning techniques look for patterns in the code
and data of processes. Scanning is resource intensive and
could be periodic or triggered by events/conditions/analysts.

ADUERSHRY (D JF
U PREE 2|CIN |10

ORY SCANNING
@ Inner workings of AV/EDR are undisclosed

@® Examples of triggered scans:

 Unusual process-tree

° SUSPICIOUS blnar\/ (ML detectlon) https://www.artstation.com/artwork/vBJx6
« Unusual sequence of API-calls

* Unusual access to files/process handles

* Suspicious traffic (amount, type, reputation)
ADUERSHARY (D JF

U PRGE C 11

ORY SCANNING

@® Common malicious indicators detected by memory scanning:
* Known-bad signature-based loC
 Reflectively loaded Dlls
* Injected threads
* RWX permissions
* Inline/IAT/EAT hooking
» modules with modified/unmatching PE header
 implanted PE files (manually loaded, not corresponding to
any legitimate module)
@ Great tools: @hasherazade's PeSieve

(@forestorr’'s Moneta ABUERSHARY|D-F
BT PAGE ®|CON| 1,

etection

Machine Learning can detect variant malware files that can
evade signature-based detection. Malware possesses
several “features” that can be used for training machine
learning models.

Moon et al. - Compact feature hashing for machine learning based malware detection %@%ES%EHB D F
UEEFALEI®|CUN| 13

ased Detection

Essentially, the workflow we follow to build any machine

learning-based detector, including a decision tree, boils down to

these steps:

* (Collect example of malware and goodware [...]

 Extract features from each training example to represent the
example as an array of numbers|...]

* Train the ML system to recognize malware using the features
we extracted

 Test the approach [...]

Malware Data Science: Attack Detection and Attribution (2018) - Joshua Saxe oy ,
FABUERSHRY DSF
UTIPIPREE 2| C 14

ased Detection

Some features used to determine wether a file is good or bad:

» Wether it's digitally signed

* The presence of malformed headers

* The presence of encrypted data

» \Wether it has been seen on more than 100 network
workstations

Lots of different features are used in ML detection

Malware Data Science: Attack Detection and Attribution (2018) - Joshua Saxe %@%ES%EHJ D F

BT PAGE.®|CON| s

1 What if a binary commonly classified as
benignware is used maliciously?

What if it's also widely used for legit
custom applications?

ased detection

An Indicator of Compromise (loC) is digital evidence that a
cyber incident has occurred. An Indicator of Attack (IOA) is
digital or physical evidence that a cyberattack is likely to
occur.

loC is static, oA is dynamic.

ADUERSHRY (D JF
UL PREEL®|CON| 4,

ased detection
loCIs retroactive
A e
(9% 55" > PRIV ELEVATE : GETSYSTEM
> W :‘ T \‘._ ' ‘ _—
*

) . (.' ;-'. ’/-) 1 : % ’
% L METSRV.DLL
v a8 y
- P ~-—

o 5y .
REFLECTIVELOADER ARy : :
f CALLEACK TO PORT 4444

~

loC provides forensic intelligence but can't help detect an

attack attempt. Signatures also generates instances of false

" ADVERSHARY|DF
positives. U PRAEEIE|CON|

UNKNOWN PROGRAM 'IIJTES[EGI[EKE
B
hg

MAKES TRAFFIC
TO LOW REP. HOSTS OPENS A HANDLE TO LSASS

loA can detect a threat not characterized by static signatures.

Does not provide sufficient forensic intelligence. Ga==EE
UIEFALE

1 What if an attacker is directly launching
a widely used signed binary (AKA
LOLbin) and operations are done
natively from that process?

A BYPASS STRATEGY

ADUERSARY
UIL &ﬂ@ﬁ El

N
OD\

N
2 \\

RATEGY

@ Main Categories of EDR Evasion
@® Constraints
@® Strategy

ADUERSHRY (D JF
BIEPREEL®|C N5

Categories of EDR evasion
@® Avoiding the EDR

* proxying traffic or pure avoidance
@ Blending into the environment
@® EDR tampering
@ Operating in blind spots

* Exploiting lack of visibility

ADUERSHARY(D JF
BT PAGE.®|C N/ s

Operating under alerting

Operating by blending in

:® Operating in blind spots

ADUERSHRY (D JF
UL PREE®|C N |2

raints

@® Operational Scenario/limitations:
 Operations done from an EDR-equipped box
* No remote process Injections
* No dropping on disk custom/unknown artifacts

» (2 agent execution is a last resort

@ Desired capabilities:
* Dynamic module loading
» Compatibility with community-driven tools
* Traffic tunneling without spawning new processes

ADUERSARY (D F

U PRGE C 25

egy
Choosing the language
(® Operating in EDR’s blind spots
* Choose a set of common non-native
languages
* Exclude languages that can natively provide
optics to EDRs.
* embeddable packages are desirable

* how much existing tooling can be reused?
* Check if capabilities can be developed

ADUERSHARY(D JF
BT PAGE.®|C N

€gy

Choosing the language

@ Python language has several benefits:
 Python >3.7 comes with an «Embeddable zip package»

Signed interpreter

Limited visibility of python code execution for EDRs

Lots of offensive tooling available

The interpreter natively runs API calls AKA “lot of

different telemetry coming from the same binary”
ADUERSHRY(D

UIPALE E|C

F

27

LEVERAGING PYTHON

//

-
o

ABUVERSARY(DF
UILE%EE B{CAN

@® Execution Method https://github.com/naksyn/Pyramid
@ Dynamically Importing Python Modules

* Bloodhound-python and impacket
@® Using BOFs with Python

* Dumping |sass with nanodump
@® In-process tunneling

* Listen, | really need to run an agent!

ADUERSHRY (D JF
UIPALEE(CIN|se

tion Method
@ Dropping “Python Embeddable Package” and running

python.exe (or pythonw.exe) directly.

* less probability of triggering loAs and loCs — no
uncommon process tree patterns.

* less probability of triggering ML detection - signed files

 No visibility for dynamic code execution for stock
python.exe - ref. PEP-578 — Python Runtime Audit
Hooks

ADUERSHRY (D JF
U PREE 2|C N |50

tion Method

Lack of visibility
PEP-578 Runtime Audit Hooks — introduced to “solve” the limited context for

Python code

API Function Event Name Arguments Rationale

compile, exec - —
s ’ | Detect dynamic code com gllatlonlwhere code could

1 - A
— (code, be a string or AST. Note that this will be called for
filename_or_none) regular imports of source code, including those that
were opened with open_code.

PyAst_CompileS compile
tring,

PyAST_obj2mod

Detect dynamic execution of code objects] This only

exec, eval, — " .
] exec (code_object,) occurs for explicit calls, and is not raised for normal
run_mo . . .
- function invocation.

(module, filename, Detect when modules are imported.JThis is raised

) _ sys.path, before the module name is resolved to a file. All

import import
sys.meta_path, arguments other than the module name may be none
sys.path_hooks) if they are not used or available.

ADUERSHARY|D JF
U PAGE.®|C N/,

tion Method

Why no visibility?

@® PEP-578 audit hooks are not
enabled in stock python.exe
@ deploying PEP-578 is complex

' you just

pepa78 need to

will

make python modify the
transparent python.exe
entrypoint

and - and
distribute distribute
a modified } a modified

python N python
executable /ﬁ executable

ADUERSHARY|DF
UTPREE(®|CON|5,

mically Importing Python Modules

@® Been around for quite some time

@ Amazing prior work done by @scythe_io (in-memory
Embedding of CPython), @xorrior (Empyre),
@n1njasec (pupy), @ajpc500 (Medusa)

» Each project has its own goals and design choices

ADUERSHARY(D JF
BT PAGE.®|C N |53

mically Importing Python Modules

@ PEP 302 — New Import Hooks
* import hooks allow you to modify the logic in which Python

modules are located and how they are loaded.

* involves defining a custom “Finder” class and either adding
finder objects to sys.meta_path

» sys.meta_path holds entries that implement Python's
default import semantics

und/ Top-level package
__init_ .py Initialize the sound package
formats/ Subpackage for file format conversions
__init_ .py
wavread.py
wavwrite.py
ffread.py
iffwrite.py
aaaaa d.py
write.py
ffects/ Subpackage for sound effects
__init__.py =) = b
ADUERSHARY|DF

ey U PREE E|C -+

mically Importing Python Modules

@® Using Import Hooks we can:
* Use a custom Finder class
* In-memory download a Python package as a zip
 Add the zip file finder object to sys.meta_path
 Import the zip file in memory

@® Problems:

» Python module dependencies nightmare
* In-memory Dynamic loading of *.pyd extensions is not
natively supported

ADUERSHARY(D JF
BT PAGE.®|C N |3

mically Importing Python Modules

@ Dynamic Loading used in Pyramid:
» Based on (@xorrior Empyre Finder class
» uses fixed packages dependencies to in-memory import
impacket, bloodhound-python and paramiko

IMPORTFIK> - - ¥

It‘
RS
\\!\\/})

-l'!‘./ .

AV =4y
) . M &
’ ,/'ﬂ

N
:

~ “':»\ 3
=~ IMPORT AGAIN= : ADUERSHARY (D ZF
BIPPAGE | CON| e

mically Importing Python Modules

¥ Process Monitor - Sysinternals: www.sysinternals.com

AN _A.NA20420 Maw 129 AN « A1 .
3 : File

Edit Event Filter Tools Options Help

EEINEN YAO| i F L/ e D

Time ... Process Name PID Operation Path

15:50:... ®python exe 7396 <2 Load Image C:\Windows\System32\rsaenh dll
15:50:... ®python exe 7396 <2 Load Image C:\Windows\System32\bcrypt dll
... Ppython exe 7396 <®Load Image C:\Windows\System32\cryptbase dll
... ®python exe 7396 <2 Load Image C:\Windows\System32\bcryptprimitives.dil
.. P'python exe 7396 <®Lload Image C:\Users\naksyn'\projects‘\Python310\python3.dll
- o . s

raphy.hazmat.bindings. openssl

python.exe 7 c‘__’ Load Image C:\Users\naksyn'projects‘\Python310\cryptography‘hazmat \bindings"_openssl.pyd

Sowing 60 of 1.683.321 events (0.0%) Backed by virtual memory

4 Event Properties . O X

ﬁ Event 5> Process & Stack

Frame Module Location Address Path A

U 13 ntdidl Ox AfBfd5e2794 C:\Windows\System32\ntdll.dll
Ox Af8fa24f3al C:\Windows\System32\KemelBase dll

Normal behavior for
Importing a pyd file

python310.dll y Ox Af8edde3bTa C:\Users\naksyn'\projects\Python310\python310.dll
on d i S k python310.dll Py_fopen_obj + (k414 OxAf8eddel3724 C:\Users\naksyn'\projects\Python310\python310.dll
python310dll Py_fopen_obj + 0x659 Ox Af8e4de3969 C:\Users\naksyn'\projects\Python310\python310.dll
python310dl Py_fopen_obj + 0x5ad 0x7Af8e4de38bd C:\Users\naksyn'projects\Python310\python310.dll
python310dl PyObject_GetBuffer + (x1076 (OxAf8e4d46a02 C:\Users\naksyn'\projects\Python310\python310.dll

python310dl PyVectorcall_Call + Ox5¢ Ox7Af8e4d25028 C:\Users\naksyn'projects\Python310\python310.dll

mically Importing Python Modules

@® How the problems were solved in Pyramid:

» Python module dependencies nightmare : solved by
providing fixed dependencies packages

* *.pyd In-memory loading would require re-engineering
the CPython interpreter losing its digital signature. An
acceptable solution — per our scenario — would be
dropping on-disk the official Pypy Wheels containing the
needed pvd files and maintain normal loading behaviour.

ADUERSHRY (D JF
BT PAGE.®|C N |38

Dynamically importing and executing ‘

BloodHound-Python 4ay

Fixed
Dependencies

Python script

llbasell

Python.exe

In-memory downloads and executes

»
>

Executes BH or secretsdump

A

-l

ADUERSHARY(D JF
BT PAGE.®|C N |10

[}

Dynamically importing and executing =t

BloodHound-Python

1[‘_

P
APPROVES

@ Python Release Python 3.104| X + = X
& C O 8 nttps python.org/dc ads/release/python-3104 8w =

Release Date: March 24, 2022

rth tena vthon 3.1 N

Python 3.10.4 is the newest major release of the Python programming language, and it contains many new features and optimizations.

This is a special release that fixes a regression introduced by BPO 46968 which caused Python to no longer build on Red Hat Enterprise Linux 6. There are only 10 other bugfixes

@ EouDuCEBEe

2226
~oee G % gpem02

Dynamically importing and executing
Impacket secretsdump

L Downloads

@ New

N sort = View

0 > ThisPC > Local Disk (C:) > Users > naksyn > Downloads Download
B Music Name Date modified Type
3 Videos Today (1)
python[110.4-embed-amd64 ompressed (zipf A KE
@ OneDrive
v [l This PC

M Desktop
] Documents

L Downloads

&) Music
PN Pictures

14 Videos

%~ Local Disk (C:)

DVD Drive (D)1

& DVD Nrive (D3 C1
1item

1item

~¢cm &

ROVES

2228
~oee O % 08002

g Beacon Object Files with Python

@ BOFs are a way to rapidly extend the Cobalt Strike's
Beacon agent with new post-exploitation features by
executing a compiled C program withing the Beacon
process.

@ Lot of amazing community-driven BOFs are available

@® Achieving a way to execute BOFs with one’s own technique
or C2 is a great way to augment capabilities.

ADUERSHARY (D JF

@I‘EE%E’E B(C 42

g Beacon Object Files with Python

@® Feature implemented in Pyramid tool:
* leverages @trustedsec COFFloader and @falconforce
bof2shellcode
* Complex BOFs such as nanodump should be modified to
be compatible

 COFF loader is converted to shellcode and BOF is
appended

* resulting shellcode can be dynamically injected with
Python into python.exe achieving in-process BOF

execution.
ADUERSHARY (D F

UIPALE E|C

43

g Beacon Object Files with Python

* COFFloader (shellcode) looks for the BOF in memory via
the magic header and 4-byte integer length.
* BOF is then fed to COFFLoader

- command line arguments are parsed (can be unstable)

UPYTHONENE = ¢
o S
Modified ag't
Header
COFFLoader |, goF BOF
(shellcode) length
\ Y)
bof2shellcode output %@%ES%E@ D F

g Beacon Object Files with Python
GAN | HAZ LSASS?

ADUERSHARY(D JF
BT PAGE | C N | 4s

g Beacon Object Files with Python

@® We can dump Isass using @helpsystems nanodump but we
need to modify the BOF by:
* Stripping internal Beacon API calls
» Hardcoding command line parameters to increase
stability
* Stripping cmd line parsing functions
@ Compile the BOF, then use bof2shellcode

@ Inject the shellcode blob into python.exe natively using
Python

ADUERSHARY (D JF

L‘}I‘E Lg%E’E B(C 46

(o) Injecting shellcode within python.exe to achieve BOF executio ‘

and dumping Isass Using process forking
&)
e

In-memory downloads and executes

[
>

to execute nanodump BOF

A

|
|
i
Injects bof2shellcode |
|
|
|
|
|

ADUERSHARY(D JF
LT PAEE 2|CON|.,

Injecting shellcode within python.exe to achieve BOF execution
and dumping Isass Using process forking

N sort = ‘
]
! = i |
Ay ¢ v~ A &> ThisPC > Downloads v Search Downloads
el
Quick access
» Today (1)
@ Desktop
3 pythnn&%).#zmbedramdﬁll 04/08/2022 16:27 Compressed (zipp.. 8,324 KB
L Download:
3 Documents

53 DVD Drive (D:) CCCC

> & Network

1item

ocess agent tunneling

@ Agent tunneling can be useful to:

* Decouple agent communications with real C2
Blend-in with SSH instead of HTTP/S or DNS
Exploit the signed python.exe context to mask C2
 Create reusable agent payloads with 127.0.0.1 as C2 host
« Make C2 server not easily reachable from the internet

@® Mind your OPSEC
* SSH credentials are stored in python.exe memory — use

at least burnable-temporary creds and whitelist IPs on

SSH server

ADUERSARY (D F

U PRGE C 49

Dynamically importing and executing ‘

BloodHound-Python 4ay

Fixed
Dependencies

Python script

“base-tunnel”

Python.exe

In-memory downloads and executes

»
!

Downloads and drops required pyd filef%
__ >

In-memory downloads and imports

Executes SSH local port forward in a
new thread

|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
i
[l
|

iInjects and executes Cobalt Strike Beacon
\Stager (tunneled)
g

ADUERSHARY(D JF
U PAGE.®|C N |

——_—,—, e —————_—— T — —

In-process tunneling a Cobalt Strike Beacon with Python

L Downloads - O X

® New o o ED W N sort

View

< v 4 > ThisPC > Downloads > . C Search Downloads

Name Date modified Type Size
v Quickaccess

v Today (2)
0 python-3.104-embed-amds4

M Desktop

Compressed (zipp. 8,324 KB
L Downloads
File folder

python-3[34-embed-amds4

-] Documents

P9 Pictures
Public

@ Music

i3 Videos

> @ OneDrive

> [ThisPC

> & DVD Drive (D:) CCCt

> & Network

2items

1item selected

usions

@ The main takeaways for the talk are:

* You can use Python Language to dynamically execute
Python tools without falling into EDR visibility.

» Python Embeddable package provide an “attack avenue”
with a signed context under which an attacker can
operate.

 Python interpreter has a huge “telemetry fingerprint” so
It can be difficult for EDRs to spot anomalies coming from
it.

* You can execute BOFs, dynamic code and in-process
tunneling from within python.exe increag¥EEERrIE

' RO LILE e =l
of not being detected. UTBIERLE®|C

52

PTHANKS!

Any questions?

You can find me on:
Twitter: @naksyn
Discord: naksyn#9538

ADUERSHARY(D JF
UL PAEE @ |C N |

https://synzack.github.io/Blinding-EDR-On-Windows/
https://www.ibs.it/malware-data-science-attack-detection-libro-inglese-joshua-saxe-hillary-
sanders/e/9781593278595

https://github.com/forrest-orr/moneta

https://github.com/hasherezade/pe-sieve
https://www.upguard.com/blog/what-are-indicators-of-attack#toc-2
https://www.xorrior.com/In-Memory-Python-Imports/

https://github.com/EmpireProject/EmPyre
https://www.scythe.io/library/an-in-memory-embedding-of-cpython-with-scythe
https://peps.python.org/pep-0578/

https://peps.python.org/pep-0302/
https://utcc.utoronto.ca/~cks/space/blog/python/ZipimportAndNativeModules
https://www.sciencedirect.com/science/article/pii/5240595952100093X
https://github.com/helpsystems/nanodump

https://github.com/FalconForceTeam/BOF2shellcode
https://medium.com/falconforce/bof2shellcode-a-tutorial-converting-a-stand-alone-bof-loader-into-
shellcode-6369aa518548

www.slidescarnival.com %@%’ES%E‘TP D F

https://synzack.github.io/Blinding-EDR-On-Windows/
https://www.ibs.it/malware-data-science-attack-detection-libro-inglese-joshua-saxe-hillary-sanders/e/9781593278595
https://github.com/forrest-orr/moneta
https://github.com/hasherezade/pe-sieve
https://www.upguard.com/blog/what-are-indicators-of-attack
https://github.com/EmpireProject/EmPyre
https://www.scythe.io/library/an-in-memory-embedding-of-cpython-with-scythe
https://peps.python.org/pep-0578/
https://peps.python.org/pep-0302/
https://utcc.utoronto.ca/~cks/space/blog/python/ZipimportAndNativeModules
https://www.sciencedirect.com/science/article/pii/S240595952100093X
https://github.com/helpsystems/nanodump
https://github.com/FalconForceTeam/BOF2shellcode
https://medium.com/falconforce/bof2shellcode-a-tutorial-converting-a-stand-alone-bof-loader-into-shellcode-6369aa518548
http://www.slidecarnival.com/

